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Abstract The performance of three recently presented training algorithms in neural networks 
is investi’gated. These algorithms are robust to infeasible problems, in which case an appropriate 
enor function is minimized. ln the infeasibility regime. simulations are performed and compared 
to  recently published analytical work in one-step replica symqetry broken theary; A careful 
analysis~explains insumciencies in these analytic resulu. A new stability result in the infeasibility 
regime is derived and shown to match simulation dak. 

1. Introduction 

To date, a number of training algorithms (e.g. [2,7,13]) for neural networks have 
been published. However, these algorithms focus on learnable problems ‘in which case 
convergence can be proved. In the case of unlearnable problems, these algorithms are not 
robust in the sense that they minimize an appropriate cost function. 

However, from the point of view of cost functions rather than algorithms, statistical 
mechanics techniques may be used to investigate properties of the network under certain 
cost functions even in the infeasiblity regime. In this contexrMajer er a l ~  [SI have recently 
calculateh the distribution of stabilities in percept” beyond saturation. The validity of 
these results cannot, however, be verified as long as no robust algorithms are at hand for 
simulations in the infeasibility regime. 

This gap can now be bridged. .Recently, three algorithms have been presented~which 
are robust versions of the Rosenblatt, minover and Gardner-Demda algorithms [14]. In  this^ 
paper they are used to train perceptrons with infeasible problems. The obtained stability 
distributions are analysed and compared to the results of Majer et al. Discrepancies are 
observed which can now be explained in detail from the geometric interpretation of the 
algorithmic performance. Additional theoretical work is presented which explains the 
stability distributions for maximum stability scenarios. 

-2. Problem and robustness 

The given problem is to find an N-dimensional perceptron vector J such that for a given set 
of N-dimensional patterns (e,, . . . , en] and corresponding outputs (‘targets’) [q, . . . , rp}  
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(6, E RN; I&l2 = N V p ;  r, E @l)) the equations 

p = 1,. . . , p (1) 
are satisfied if the problem is feasible or, otherwise, the given error functionals of (1) are 
minimized (see below). 

In a geometric context, equations (1) requires a plane thmugh the origin separating the 
points <, into two classes with positive and negative output. The minimum distance of any 
4, to the plane is the measure of stability 

r, = sign(J. 5,) 

A =: min A, =: min (k) . r,C, . 
P IL 

Thus, the perceptron of optimal stability is (J*)  such that 

Defining U, = r,&, training will be performed with the robust algorithm presented in 
[14]: 

3. A high number of stabilized patterns (Gardner-Derrida) 

The Gardner-Derrida cost function represents the maximized number of stabilized patterns. 
Finding the maximum number of stabilized patterns in the infeasible case has been shown 
[l] to be non-deterministic polynomial complete (NP-complete). This tells us that, in the 
worst case, we are facing a very difficult problem. However, here we investigate algorithms 
achieving locally optimal solutions which in the average case are acceptable, as will be seen 
below. Indeed, various approaches for maximizing the number of unstabilized patterns in 
unleamable problems have been reported. Amongst them are the works by Rujan [Ill,  
Frean [4] and Gallant [5], all of which are briefly discussed in the context of the present 
work in [14]. However, these algorithms include time-expensive schemes like annealing 
procedures or the storage of intermediate sets of weights, which are not needed in the three 
algorithms used here. 

A pattern is regarded as stabilized if (5") . u,)/lJ(')I > K .  Maximizing the number 
of stabilized patterns will, for example, be useful if one is 'only' interested in learning, or 
if the patterns are noisy and therefore unreliable. For learnable problems, all patterns will 
be stabilized but the results will be otherwise suboptimal. In this case, one may prefer the 
third algorithm presented here which yields local maximum stability. 

For unlearnable problems, maximizing the number of stabilized patterns means that a 
subset of patterns will be allowed to have very low (negative) stabilities. One does not aim 
at using these patterns for training. Instead, update steps are taken with the pattern which is 
easiest to stabilize at the current iteration. It was shown in [14] that, in this spirit, a locally 
maximized number of stabilized patterns will be reached if one uses at any iteration step the 
one incorrectly mapped pattern with stability closest to K ,  i.e. update steps are performed 
according to equation (4) where U@) is given by 

J'" -a(') = max{J'" . U, I J") . u,,/l.Pl c K ] .  
P 

The stability distribution, and consequently the rate of errors of the robust Gardner- 
Derrida algorithm, can be compared to theoretical results given by Majer et al [8]. As an 
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example of their results, the authors investigate the distribution of stabilities at LY = 1, K = 1 
which is an unleamable problem. They obtain a gap below K in the stability distribution. 
Going from replica symmetric (RS) theory to one-step replica symmetry broken (RSB) theory, 
the gap narrows, the unstabilized branch of the distribution becomes flatter, the stabilized 
branch becomes increasingly peaked, and the weight of the S-function at A = K decreases. 
It is  unclear^ from the theoretical investigation whether these effects are becoming more 
severe with further steps of RSB. The one-step RSB results are plotted in figure 1. 

6 = 0.428 

Figure 1. Stability distribution p(A) for the Gardner-Derrida mst function algorithm with 
desired stability I = 1 at a = 1: dotted c w c s ,  analytic result in one-step RSB [SI, exhibiting 
a &function at A = 1 with weight 0.667: histogram, simulations with N = 500 and 100000 
steps, averaged ovw 100 panem instances. The weight accumulated in 1 < A < 1.125 is 0.428. 

These results are compared to simulation.data obtained with the robust Gardner-Derrida 
algorithm. It has already been shown in [ 141 that this algorithm will produce a gap below 
K in the stability distribution, in accordance with 181. In simulations, 1OOooO update steps 
have been taken in networks with patterns of 500 randomly chosen binary inputs, again for 
CY = 1 and K = 1. This has been repeated for 100 independently chosen sets of patterns, 
the stability distributions have been sampled and averaged. They are shown as a histogram 
in figure 1. The simulation data verify the tendency of the theoretical results, they exhibit 
the predicted features such as the gap, the two branches and the &function. However, the 
tendency which was observed by Majer et al 181 in the fust step of RSB continues: the 
gap becomes even narrower, the unstabilized branch of the distribution keeps its Gaussian 
shape but is shifted, the stabilized branch becomes increasingly peaked, and the weight of 
the S-function at A = K decreases. 

With these observations, it must be questioned whether one-step RSB already gives 
sufficiently accurate results. The claim of Majer et a1 [8] that ‘the effects of RSB appear to 
be rather small’ could not be verified. !. 

The rate of errors in this case is rr 0.14 in one-step RSB and 0.18 in~the simulations. 
This again indicates an error-rate increase in further steps of RSB which is a continuation 
of the increase observed by Majer et a1 181 at the first RSB step. The same effect has also 

. 
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&vue 2. Error m e  e of the Gardner-Derrida cost-function algorithm for Uuee values of the 
desired stability K at various (I: curves, analytic result in one-step RSB [SI: points. simulations 
with N = 100 and 50 000 steps, averaged over 100 pattern instances. The standard errors of the 
mean are smaller than the size of the symbols. 

been observed for other values of K and a, as shown in figure 2. 

4. Robust Rosenblatt perceptron 

The second cost function and respective algorithm, in the spirit of Rosenblatt’s perceptron 
learning algonlhm, aims at leaming any unstabilized pattem. The desired minimum stability 
is again chosen to be K .  

For learnable problem, all pattems will be stabilized but the results will be otherwise 
suboptimal. In this case, one may again prefer the (third) maximum stability solution. 

For unlearnable problems, all unstabilized pattems will be used in random order for 
the updates which leads to a steady state in the stability distribution. In particular, patterns 
which have been stabilized previously will, in the steady state, be located on either side of 
the stability threshold K .  

In [141 it was shown that one can perform updates according to equation (4), where 
according to the spirit of the original perceptron algorithm [lo], U(’) is taken rundomly 
out of the set of patterns with A p  < K. The difference to the previous section is that this 
algorithm does not aim at maximizing the number of stabilized pattems, instead it treats 
any unstabilized pattem equally. 

Theoretical results for the perceptron algorithm have again been obtained by Majer et 
al [SI. As an example, the authors have chosen a = 4, K = 0.5. The theoretical results and 
a histogram displaying the simulation results are shown in figure 3. Theory and simulation 
coincide well in the tails of the distribution which changed only incrementally when going 
from Rs to one-step RSB. This suggests that further steps of RSB will not produce significant 
alterations. 

The effect of an RSB decline of the weight of the &function at A = K with a simultaneous 



e 
6 = 0.29 

6, = 0.215 

Figure 3. Stability distribution p ( A )  for the Romblatt cost-function algorithm with desi& 
stability K = 0.5 at a = 4 dotted curves, analytic result in onestep RSB [SI, exhibiting a S- 
function at A = 0.5 with weight 0.215, and a ‘tip’ at the same location: histogram, simulations 
with N = 150 and 100000 steps. The weight accumulated in 0.25 < A c 0.75 is 0.29. 

development of a ‘tip’ in the tails demands a more detailed investigation. The simulation 
data indeed verify the explanation of a steady state in the stability distribution where patterns 
will be located on either side of the stability threshold K .  This can be seen clearly fiom the 
simulation data which exhibit a tip with equal weight on either side of K .  As already shown 
in [14], J will always perform macroscopic jumps away from patterns at the boundary 
A@ = K .  Further, stability relies on very long training sequences leading to a very large 1.71 
to ensure quasi-continuity of the movements taken by J and a quasi-homogenous frequency 
of non-stabilized patterns used for updating. This was well reflected in the simulations which 
needed 2 100OOO steps for the network under consideration, and in the need to average the 
results over a large number (> 20000) of final training steps in order to obtain the steady 
state results. 

Majer et al [SI have attributed the full weight of their S-function to the stabilized 
patterns; under this ongoing discussion, this appears to be incorrect. Further simulation 
results in figure 4 give the error rate. These results show that the difference between the 
measured and the predicted error rate is about one half of the weight of the S-function. 
This clearly supports that, in the Rosenblatt solution, the patterns at the stability boundary 
A = K alternate between stability and instability. 

5. Maximum stability 

Here, the gap size between the convex hulls of the two output clusters is taken to be 
maximal, even if the gap is negative. In the feasibility regime, maximum stability is often 
chosen since it leads to good generalization abilities and fault tolerance 191. It is noted 
right away that in the negative stability regime, the number of patterns stabilized under 
this concept is far from  maximal.^ If a high number of stabilized patterns is desired, the 
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Figure 4. Error m e  e of the Rosenblan cost-function algorithm for three values of the desired 
stability K at various U: curves, analytic result in onestep RSB [SI; points. simulations with 
N = 100 and 50000 steps. 

Gardner-Demda solution will be useful. 
In order to attain maximum stability, it has been shown in [14] that one can, perform 

updates after equation (4) where U(') <s given by J") . U(') = min,(J@) . or}. In contrast 
to the previous sections, this is a worst case update where one aims only to improve the 
stability of the least highly stabilized pattern. 

Let us now compare data obtained by this algorithm to analytically calculated stability 
distributions. In a statistical mechanics type calculation, the maximum stability A*@) is 
found implicitly by an analytic continuation of the Gardner result [a: 

where Dz = (2ir)-'/2exp(-z2/2) is the Gaussian measure. This result is confirmed by 
simulation data, see figure 5 as an example. It is also plausible~that thii result shall hold 
since the error measure of the corresponding algorithm is locally convex. Assuming equi- 
partitioning of these convex regions, replica symmetry can be expected to be unbroken. The 
stability distribution for feasible probldms has been calculated in [12]: 

(6) 
1 m 

p ( A )  = 8 ( A  - A*) Dz + @ ( A  - A*)- exp[-Az/2]. Jz;; 
Taking equation (5) into account, however, in this equation more than N patterns contribute 
to the weight of the S-function for A* c 0 (a > 2). This is in contradiction to results from 
optimization theory [3] which state that J* will be given as a pseudo-inverse constructed 
from a set [U;] of at most N patterns with equal overlap J; . ur/lJ*l = A* to J' (hence 
the &function). 

It is as well confirmed by simulations which clearly show that for ci > 2, exactly N 
patterns constitute the S-function, i.e. its weight is I/a. Since the other patterns do not 
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Figure 5. Stability distribution p(A) for Lhe maximum stability cost-function algorithm at 
U = 4 broken curves, analytic result, equation (13). exhibiting a &function at A = -0.41 with 
weight 0.25: histogram, simulations with N = 200 and 2wqOO steps. The weight accumulated 
in 0.5 4 A < 0.25 is 0.250. 

contribute to the result, it follows from geometric considerations that their distribution must 
be Gaussian with width one. This can be seen as follows. 

Let V(A) be the volume of the surface on the N-dimensional <-shell 4 t h  the condition 
that the stability is A, i.e. 

V(A)=  d<6(<’-N)6 - J . < - A  . (7) s (I:, 1 
Further, let p(A) be the density of the free patterns not contributing to the &function. Then, 
for randomly distributed pattems, from the ratio of volumes available for the pattems we 
find 

(8) 

In order to compute this ratio we can choose the coordinate system such that J = 
(IJI, 0,. . . ,O). Integrating over the first dimension, we obtain 

The numerator and denominator are now equal to the surface area of two (N-1)-dimensional 
spheres. Their ratio then reduces to the ratios of radii, taken to the power (N - 2). We 
obtain 
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For N >> Az, A,, this equation gives 

p (Ad  exp(A:/2) = p(Ad exp(A:/2) 

which is readily solved by 

p(A) =constant x exp(-A2/2). 

- I I I I I ~ I  1 1 1 1 l 1 1 1 1 1 1 1 1 1  - 
.5 - - 
I max. stab. 

- (line: 0 -  

- - - " 0 0 -  

.4 - - - 
I theory) a a.. 

e -  - 
4 - - 

.3 - 1) - - - Rosen- A 0 

I blatt  
- - - a 

0 - - .2 - 0 - - - D - - - 
0 

- 
LGardner- n rC=O - - - 
- Derrida 

D - 
n - 

This leaves as the only possible solution the following rescaling of the full stability 
distribution for a! > 2 

l-l/ar 1 
exp(-A2/2). (13) 

1 
g(A) = J(A -a*)- + @(A - A * ) r -  

(Y JA. Dz 6 

a 

Figure 6. Error me e of all three cost-functions algorithms for the desired stability K = 0 at 
various CI. Curve: analytic resnlt forths minover solution, equation (15). Points: simulations 
with N = 100, 50000 steps. so top: maximum stability; centre: Rosenblatt; bottom: Gardner- 
De rri d a. ) 

Further, from equation (13), the error rate e ( K )  is given by the fraction of patterns which 
have stability A < K ,  i.e. for K > A*: 

e ( K )  = 1 - (1 - :) g. (14) 

Simply asking for the fraction of wrongly mapped patterns (disobeying equation (1)) 
corresponds to the error rate e(0) which is 

1 
2 

c -. 1 
e(0)=1-  1 - -  - ( : ) z j p z  
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This is in contrast to the acclaimed belief that e(0) = 0.5 for the perceptron of maximum 
stability beyond saturation (e.g. in [SI). For K = 0, figure 6 shows the theoretical curve 
after equation (15) (with A* after equation (5)) and simulation data. The results agree 
well, confirming that the perceptron of maximum stability is not useless beyond saturation. 
Figure 6 also compares the error rate (15) to the error rates e(0) of the Rosenblatt and 
Gardner-Derrida solutions. As expected, the Gardner-Derrida solution has the lowest error 
rate. 

6. Conclusions 

We have investigated the performance of three recently presented robust training algorithms 
for neural networks trained with infeasible problems. For the Gardner-Demda and 
Roseublatt solutions, the stability distributions generated by the robust algorithms explain 
insufficiencies in previous results from one-step replica symmetry broken theory. For the 
maximum stability solution, analytic results were presented which match the algorithmic 
results and which, in particular, show that this solution produces error rates less than 1. 

Stabilities and error rates with robust algorithms have therefore been shown to he 
theoretically predictable, using not only statistical mechanics but also insight from geometric 
explanations and from optimization theory. The presented material ensures that these 
algorithms provide a reliable tool in the understanding of neural networks beyond saturation, 
and in the approach to appropriate robust training of multilayer networks. Together, they 
pave a solid basis for both analytic and algorithmic understanding of robust neural network 
training of infeasible problems. 
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